Netskope vuelve a ser reconocido como Líder en el Cuadrante™ Mágico de Gartner® para plataformas SASE. Obtener el Informe

cerrar
cerrar
Su red del mañana
Su red del mañana
Planifique su camino hacia una red más rápida, más segura y más resistente diseñada para las aplicaciones y los usuarios a los que da soporte.
          Descubra Netskope
          Ponte manos a la obra con la plataforma Netskope
          Esta es su oportunidad de experimentar de primera mano la Netskope One plataforma de una sola nube. Regístrese para participar en laboratorios prácticos a su propio ritmo, únase a nosotros para una demostración mensual del producto en vivo, realice una prueba de manejo gratuita de Netskope Private Accesso únase a nosotros para talleres en vivo dirigidos por instructores.
            Líder en SSE. Ahora es líder en SASE de un solo proveedor.
            Netskope ha sido reconocido como Líder con mayor visión tanto en plataformas SSE como SASE
            2X líder en el Cuadrante Mágico de Gartner® para SASE Plataforma
            Una plataforma unificada creada para tu viaje
              Protección de la IA generativa para principiantes
              Protección de la IA generativa para principiantes
              Descubra cómo su organización puede equilibrar el potencial innovador de la IA generativa con sólidas prácticas de seguridad de Datos.
                Prevención de pérdida de datos (DLP) moderna para dummies eBook
                Prevención moderna de pérdida de datos (DLP) para Dummies
                Obtenga consejos y trucos para la transición a una DLP entregada en la nube.
                  Libro SD-WAN moderno para principiantes de SASE
                  SD-WAN moderna para maniquíes SASE
                  Deje de ponerse al día con su arquitectura de red
                    Entendiendo dónde está el riesgo
                    Advanced Analytics transforma la forma en que los equipos de operaciones de seguridad aplican los conocimientos basados en datos para implementar una mejor política. Con Advanced Analytics, puede identificar tendencias, concentrarse en las áreas de preocupación y usar los datos para tomar medidas.
                        Soporte técnico Netskope
                        Soporte técnico Netskope
                        Nuestros ingenieros de soporte cualificados ubicados en todo el mundo y con distintos ámbitos de conocimiento sobre seguridad en la nube, redes, virtualización, entrega de contenidos y desarrollo de software, garantizan una asistencia técnica de calidad en todo momento
                          Vídeo de Netskope
                          Netskope Training
                          La formación de Netskope le ayudará a convertirse en un experto en seguridad en la nube. Estamos aquí para ayudarle a proteger su proceso de transformación digital y aprovechar al máximo sus aplicaciones cloud, web y privadas.

                            Insider Threats Packing Their Bags With Corporate Data

                            May 11 2023

                            Introduction

                            The insider story, whether it is a disgruntled or negligent employee, is one that is familiar to many organizations. The 2020 Securonix Insider Threat Report found that 60% of the insider threat cases they dealt with involved a “flight risk” employee, or an individual that is getting ready to leave their employment. In today’s cyber ecosystem identifying these threats has become more important than ever, since more organizations are responsible for personally identifiable information (PII) and intellectual property (IP) than ever before. Since every organization is likely responsible for sensitive data and has these “flight risk” users, a strategy for addressing insider threats is necessary.

                            In this blog, we will summarize a study we conducted on 58,314 people that left their employment, the behaviors they exhibited before leaving, and the nature of the data they attempted to take with them. Furthermore, we will outline some techniques you can use in your own environment to find similar cases of data exfiltration via cloud apps.

                            We found that the last 50 days of employment is when a majority of the data movement occurs.

                            The analysis presented in this blog post is based on anonymized usage data collected by the Netskope Security Cloud platform relating to a subset of Netskope customers with prior authorization.

                            Scope

                            Insider threat can mean a vast array of things, but for the sake of scoping this research, when we say insider, we mean an individual that has exfiltrated sensitive corporate data using cloud apps, where sensitive data is defined as data that could hurt an organization if it were to be leaked to the public or a competitor. 

                            We are not focused on insiders doing any of the following:

                            • Using a USB drive to move data
                            • Printing out documents and walking out of the building with them
                            • Taking pictures of a monitor with their phones

                            Overview of our approach

                            Our approach to addressing this threat can be broken down into three elements:

                            1. Having the correct architecture to monitor cloud traffic
                            2. Applying labels to the data being moved
                            3. Analyzing the data for anomalous behavior 

                            Architecture

                            Architecture to monitor cloud traffic

                            To successfully identify data movement to the cloud from the corporate environment, we monitor both inline forward proxy logs and API audit logs. The inline forward proxy logs are able to identify data movement to managed and unmanaged cloud applications. And the audit logs identify access from managed and unmanaged devices. All of this information is then anonymized and analyzed for anomalies. 

                            Applying labels

                            The cloud traffic needs to be labeled via two mechanisms so we can gain the most insight from the logs.

                            Applying Instance Labels

                            We apply instance labels by looking at the application itself, the name of the instance extracted by the proxy, and the domain of the username used to log into the application. For example, a user named John working at Acme uses Google Gmail for personal correspondence, and Acme provides him a Google Gmail account for business correspondence. We consider these two instances of the same app; John’s personal instance and the Acme organization instance.

                            ApplicationDomainLabel
                            Google Driveacme.comBusiness
                            Google Drivegmail.comPersonal
                            Google Drivefoobar.comUnknown

                            Applying Data Labels

                            To apply data labels, the files in the traffic are sent to the DLP module to ensure compliance with organization-configured DLP policies. When files that violate the policies set by the organization are moved, an alert is raised.

                            When these labels are applied to the data, the result looks something like the following:

                            UserAppApp Instance labelActivityFile NameDLP Violation
                            [email protected]Google Drivepersonaluploadblack_project.docxSecret project code names

                            Anomaly Detection

                            All of the above events are then sent to an anomaly detection component that identifies unusual deviations from the individuals’ baseline behavior. This behavior is focused on data movement anomalies that violate corporate DLP policy.

                            Anomaly detection looks for spikes in activities that are different from the user’s baseline behavior. For example, if a user usually uploads under 2 MB to their personal applications but suddenly uploads 2 TB to their personal Google Drive in one day, this would be anomalous behavior.

                            The key to accurately detecting insider threats exfiltrating data to cloud apps is to have all three components, instance labels, data labels, and anomaly detection. Omitting one or more of these components results in a significant decrease in detection efficacy. 

                            Data Exfiltration

                            15% of the “flight risk” employees moved data to personal cloud applications, but only 2% of the “flight risk” employees violated corporate policies.

                            The 2% of “flight risks” that violated corporate policies moved:

                            • 94% of the files in the last 91 days
                            • 84% of the files in the last 49 days
                            • 74% of the files in the last 28 days
                            • 49% of the files in the last 14 days

                            So, if you were to monitor the last 14 days of employment, you may detect about half of the files being exfiltrated. In order to catch the full 2% of users, you would need proactive analysis for a longer period. 

                            Conclusion

                            In this blog, we reviewed the insights we gathered by looking at more than 58k users that left their employment. We saw that about 2% of individuals that leave their employment mishandle corporate data before leaving. While 2% might not seem like a lot, the data that these individuals target ends up being about 70% IP and PII. To mitigate this, we need to:

                            • Understand that 2% of “flight risks” take sensitive data with them
                            • And that 75% of data is uploaded in the last 50 days, before the typical 14 day notice
                            • But by monitoring the nature, volume, and direction of data moved we are able to detect these cases

                            If you enjoyed the insights from this blog post, keep up with the latest from Netskope Threat Labs here.  

                            author image
                            Dagmawi Mulugeta
                            Dagmawi Mulugeta is a security researcher with interests in cloud security, incident analysis & prediction, exploit development, and large-scale data analysis.
                            Dagmawi Mulugeta is a security researcher with interests in cloud security, incident analysis & prediction, exploit development, and large-scale data analysis.
                            author image
                            Colin Estep
                            Colin Estep has 16 years of experience in software, with 11 years focused on information security. He's a researcher at Netskope, where he focuses on security for AWS and GCP.
                            Colin Estep has 16 years of experience in software, with 11 years focused on information security. He's a researcher at Netskope, where he focuses on security for AWS and GCP.
                            Conéctese con Netskope

                            Subscribe to the Netskope Blog

                            Sign up to receive a roundup of the latest Netskope content delivered directly in your inbox every month.